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ABSTRACT

Recent chromosome conformation capture (3C) experiments
produce genome-wide networks of chromatin interactions to
help to study how chromosome structures relate to genomic
functions. We investigate whether properties of chromatin
interaction graphs based on shortest paths, maximum flows,
and dense cores correlate with the spatial proximity in a
three-dimensional model of the yeast genome. We demon-
strate that within automatically-detected dense subgraphs,
which correspond to spatially compact cores of interacting
chromatin, these properties are well-correlated with spatial
volume. We show that all tested methods are able to iden-
tify spatially compact sets when the test sets contain frag-
ments from several chromosomes. We use a framework for
systematically evaluating whether a method can accurately
assess the spatial enrichment of a set of genomic loci for a
hypothesized biological function. In such regions, we ob-
serve that the sets of fragments contained in the maximum
density subgraph overlap highly with the sets of fragments
in the spatially compact cores. Further, we observe that all
methods agree on the spatial closeness of the yeast genomic
annotations. Together, we show that compared to the more
computationally complex and expensive three-dimensional
embedding approach, the topological features of 3C graphs
can be used to directly detect spatial closeness.
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1. INTRODUCTION

Chromosome Conformation Capture (3C) [6] is a recently
developed experimental method used to study the spatial
structure of chromosomes by observing pairwise spatial con-
tacts between regions of chromatin. Such experiments pro-
vide counts of observed instances of cross-linking between
pairs of genomic segments flanked by restriction enzyme
sites, with the interpretation that pairs of segments with
high counts were often in close proximity among the pop-
ulation of cells assayed. The 3C technique and its subse-
quent refinements (4C [22, 9], 5C [2, 8, 25], Hi-C [7, 18,
23, 21], TCC [16]) have been used as tools to explore the
genomic structures and features of bacteria [25], yeast [9,
23], fruit fly[21], mouse [7], and human [2, 7, 18]. These
interactions have been used to verify the large-scale organi-
zation of chromatin territories [18], to investigate cancer and
disease related genome alternations [11, 19], and to confirm
and postulate instances of long-range regulation [2].

3C data has also been used to identify classes of genomic
features that are preferentially spatially colocated in order to
find biological functions for which the arrangement of DNA
in the nucleus is important. A three-dimensional model of
the chromatin is often computed to study the genome struc-
ture [9, 23, 2, 25, 3]. The model is usually built to satisfy
as many of the 3C interactions as possible, while respect-
ing a variety of other established properties of chromatin,
including the volume constraint of the nucleus, the physical
constraints of the DNA molecules, and some known bio-
logical preferences of the chromosome structure. A three-
dimensional model of the chromatin structure is useful, and
it can incorporate biological constraints on highly repeti-
tive sequence regions such as centromeres and ribosomal
DNAs [9] that are not available in the raw 3C data. How-
ever, requiring the computation of an embedded chromatin
structure is computationally complex and expensive. In the
yeast 4C experiment, for example, there are 4,053 genomic
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fragments and 914,746 spatial constraints between pairs of
fragments, and it takes more than one day to optimize this
complex objective function [9]. Further, a large amount of
uncertainty exists in the embedded structure. In order to
build the distance constraints among genomic loci, the ob-
served 3C interaction frequencies need to be mapped to dis-
tances. Different frequency-to-distance mappings will result
in very different constraints, which will then lead to different
structures. Moreover, the constraints from the 3C interac-
tions are usually metrically inconsistent. Such inconsisten-
cies are a result of both the noisy 3C data and the nature of
the 3C experiment. The interactions come from an aggre-
gate population of cells which may have different and incom-
patible geometries. Only a small subset of the constraints
can be satisfied to some degree, and different subsets of con-
straints will result in different 3D embeddings [10].

Several approaches have been proposed to infer spatial
colocalization of the chromatin structure without computing
a chromosome embedding. Earlier methods assume that the
number of observed 3C interactions given the number of pos-
sible interactions follows a hypergeometric distribution [9,
5]. Such a parametric approach, as pointed out by Witten
and Noble [26], makes the inaccurate assumption that every
observation of an interaction is an independent event. This
assumption does not hold because 3C interactions involving
the same or nearby fragments of genes are strongly corre-
lated. To address this, Witten and Noble [26] proposed a
non-parametric procedure to evaluate the spatial closeness
for sets of genes by randomly resampling sets of restriction
fragments as the background distribution. Kruse et al. [17]
subsequently proposed a rewiring procedure, randomly shuf-
fling the interactions while preserving the degrees of restric-
tion fragments and the transitivity of the entire graph, to
sample from background distribution. All of the methods
above are based on the (sometimes weighted [23]) fraction
of observed interactions (edge-fraction) between the loci of
a given set of genomic features.

Here, we propose and compare a variety of topological
metrics as measurements of spatial proximity without the
need to compute a three-dimensional embedding of the genome
(or any subset of it). Given a set of genomic loci, we ex-
plore the properties of all pairwise shortest paths, network
flow, and the maximum density subgraph to evaluate spa-
tial proximity of the chromosome structure directly from
the 3C graph. Our methods are able to make better use of
the observed frequencies of each interaction (edge weights)
than the previously proposed edge-fraction approach. For
example, our approach based on shortest paths accounts for
transitivity of distance constraints and ought to reveal some
information about non-observed 3C interactions due to the
absence of cross-linking. The maximum density subgraph
approach can extract the densest core in a graph and can
reveal surprisingly compact regions masked by outliers.

We investigate the topological properties on 4C measure-
ments in budding yeast Saccharomyces cerevisiae [9]. These
data have been widely studied for colocalization tests on ge-
nomic features [9, 5, 26, 17, 3]. We show that all tested
topological properties correlate well with the spatial prox-
imity measured by the volume of the convex hull of the dense
subgraph of a set of positions. The volume of the convex hull
is computed based on an existing three-dimensional model
of the yeast genome [9].

We apply our methods to both synthetic feature sets se-
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lected from the yeast three-dimensional embedding and to
real genomic features [9]. To test the intuition that richer
graph properties will more accurately identify spatially close
sets, we introduce a new framework for systematically eval-
uating a method’s false positive rate, true positive rate, and
ability to handle outliers when estimating spatial enrich-
ment.

We show that under a reasonable resampling scheme that
controls for chromosome-specific interaction patterns, our
colocalization statistical analyses are both robust and un-
biased. Moreover, all methods perform well on test sets
that contain a variety of chromosomes. For such sets of
genomic loci, the method of finding the maximum density
subgraph has the added benefit that it finds dense regions
in the graph that overlap well with the true spatially com-
pact regions. Lastly, by incorporating interaction frequen-
cies into the tests, we find the telomere sets, which were
previously thought to be significantly colocalized [9], are
likely to be not. Overall, we illustrate that these proposed
graph-theoretic measures can identify spatial closeness well
without the need to compute an embedding and can be an
alternative indicator of spatial functional enrichment.

2. FORMAL PROBLEM SPECIFICATION

Given a set F' of genomic loci (representing genes or other
features) and a collection of observed 3C interactions G, we
would like to test whether the points in F' are significantly
spatially close as implied by the 3C interactions. We com-
pute a statistic f on G and F', and we argue that statistical
significance of f likely indicates statistically significant spa-
tial proximity. This leads to the following problem:

PROBLEM 1  (SPATIAL PROXIMITY TEST). Given a set
of genomic loci F and a weighted graph G = (V,E,d) of
3C interactions where V is the set of genomic segments pro-
duced by the 3C experiment, E is the set of 3C interactions,
and d(e) is the weight of interaction e, return YES if F is
statistically significantly spatially close in three dimensions.
Otherwise, return NO.

The input loci F' here is a subset of V. Input sets consist-
ing of genes or genomic ranges should be mapped to genomic
fragments first, and the test statistic is computed using the
fragments. The given edge weight d(e) is typically an esti-
mate of pairwise spatial proximity derived from observed 3C
interaction frequency. Problem 1 does not address the issue
of outliers within the provided set F. To handle these, we
introduce the following problem:

PROBLEM 2 (CoMPACT CORE FINDING). Given inpul
as in Problem 1, return YES if some subset of F' is spa-
tially close in three-dimensions. If so, return the subset.

3. MATERIALS AND METHODS
3.1 Yeast 3C interaction data

We use the S. cerevisiae 4C measurements based on the
HindIII restriction enzyme library from Duan et al [9]. The
3C experimental procedure may introduce systematic biases
that distort the true frequency of the data. We therefore
applied the same false discovery rate (FDR) cutoff of 0.01
to pre-filter the noisy 4C data, and we applied the same
frequency-to-distance mapping to convert the interaction
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frequencies to distances. Other normalization methods have
been proposed for Hi-C experiments [27, 14, 15]. Some are
not directly applicable to 4C data because the assumptions
for normalization are specific to Hi-C data [15]. Kruse et
al. [17] applied the normalization method proposed by Yaffe
and Tanay [27] to get an interaction probability for every
fragment pair. They then chose a different FDR cutoff to
filter the 3C interactions. However, Yaffe and Tanay’s nor-
malization method [27] does not take into account the cir-
culation bias [4] that is specific to 4C experiments. Here, in
order to compare directly with Duan et al. [9] and Witten
and Noble [26], we use their data processing framework.

We test our methods on 3C graphs considering only the
inter-chromosomal (fragments from different chromosomes)
interactions. Including intra-chromosomal (fragments from
the same chromosome) data ought to be beneficial since
more information is incorporated for evaluating spatial en-
richment. It can reveal unique spatial structure patterns
of a specific chromosomes like zippering [9] and long range
looping [2]. However, intra-chromosomal interactions are
strongly influenced by linear genomic proximity. A high
frequency intra-chromosomal interaction can be caused by
genomic closeness or spatial closeness, and it is difficult to
distinguish the two. Furthermore, intra-chromosomal inter-
actions have higher frequencies than inter-chromosomal in-
teractions, and thus can carry more weight in spatial enrich-
ment estimation. We therefore consider only inter-chromo-
somal interactions following Witten and Noble [26] and Kruse
et al. [17]. We validate this choice further in section 4.5.

3.2 Graph-based proxies for spatial closeness

We evaluate the following topological properties for their
statistical correlation with spatial proximity. Given a set
of restriction fragments F' C V, we compute the following
topological properties f(F):

|E(F)]

(a) fedge,fraotlon(F) |Ea(F)‘ .
Here, E(F) is the set of observed edges with both end-
points in F. Eq(F) is the set of all possible edges among
the given set of nodes. If only inter-chromosomal edges
are included,

|Ea(F)] = > cicj,
5,17
i,j€chromosomes in F

where ¢; is the number of fragments in F' on chromosome
1. fedge fraction 18 widely used as a proxy for spatial prox-
imity [9, 26], however it is likely sensitive to the effects
of outliers or missing measurements in the 3C experi-
ments. This method does not use edge weights directly,
but rather considers an edge present only if the false dis-
covery rate (FDR) derived from its observed frequency
is less than 0.01.

(b) fspmean(F) = the mean of all pairwise shortest path
lengths between nodes in F. The weight on each edge e
here is the distance d(e) computed using the frequency-
to-distance mapping as employed by Duan et al. [9].
Computing shortest paths instead of using just observed
edge weights addresses the issue of missing 3C interac-
tions in connected triples and longer paths in the 3C
graph. fsp mean is therefore robust to this kind of in-
complete experimental data.
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(¢) fAow mean(F) = the mean of the maximum flow value
between pairs of nodes in F. The maximum flow on
an edge u,v can be thought of as the largest amount
of water that can be sent from u to v by treating the
edge as a pipe with the capacity of the observed 3C
interaction frequency. Unlike when computing shortest
paths, the edge weight here is the interaction frequency.
Maximum flow avoids the problem that shortest paths
can be significantly lengthened or shorted by a single
edge deletion or addition. All pairwise maximum flows
are efficiently computed via a Gomory-Hu tree [13].

(d) fmax dense(F) = the density of the maximally dense sub-
graph D contained in F, where

ZEGE(D) w(e)
V(D)

and w(e) is the interaction frequency of edge e. The un-
weighted density can be computed by setting w(e) = 1.
The definition of density used in fmax dense has been
widely studied and admits maximization via a poly-
nomial-time algorithm [12]. This statistic emphasizes
the importance of a compact core and helps to elimi-
nates the effects of outliers. A density definition like (a)
above, the portion of observed edges, is not applicable
to maximization since there exists a trivial solution that
can maximize the density: a graph with one edge.

density =

3.3 Scheme for spatial enrichment tests

We obtain a p-value for the statistic f(F’) in a non-parametric

manner similar to that proposed by Witten and Noble [26].
The procedure is described below:

(1) Resample a set B of 1000 sets of from V. How these
sets are sampled depends on whether the input fea-
tures are fragments, genes, or genomic ranges. In the
case that they are fragments, then |F| random restric-
tion fragments are chosen. If the original input is a
set of genes, then the same number of genes are ran-
domly selected, and the selected genes are converted
into fragments by choosing fragments whose midpoint
lies within the selected gene. If the inputs are genomic
regions, then new random starting coordinates for the
regions are chosen, keeping the length of each region
unchanged; we then choose those fragments whose mid-
point lies within the regions. In all three cases, we keep
the number of elements selected from each chromosome
the same as in the input F. Such a procedure controls
the fact that different chromosomes may interact with
each other quite differently due to the tethered nature
of the yeast genome and due to the differences in the
chromosomal lengths [24].

(2) For each B € B compute f(B) to get a background
distribution of values.

(3) Compute the empirical p-value as the fraction of exam-
ples B € B where we count f(B) > f(F) (except for
shortest path, where we count f(B) < f(F)). A set is
called statistically significant if this p-value < 0.05.

In order to generate the background distribution, our re-
sampling procedure randomly samples nodes in the graph
while keeping the graph topology fixed. An alternative ap-
proach would be to randomly rewire the interactions of the
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network by fixing the nodes of interest [17]. However, gener-
ating a set of random graphs as the null model that preserves
the topological structure of the original graph without intro-
duing any artificial bias is quite challenging. Kruse et al. [17]
propose a Markov-chain procedure for reshuffling 3C edges
until the rewired graph reaches or exceeds the transitivity of
the original graph. This is a computationally intensive pro-
cedure since it requires many reshuffling steps to obtain a
graph with transitivity comparable to that of the observed
3C graph. Further, there might exist other properties, or
a combination of properties, that can better describe the
topological structure of the yeast network. We thus chose
the procedure above in consideration of efficiency, simplicity,
and generality.

3.4 Sets of yeast genomic loci of interest

We use the genomic feature sets from Duan et al. [9].
These features include: centromeres, telomeres, breakpoints
(including the ancestor breakpoints of S. cerevisiae and the
evolutionary breakpoints between S. cerevisiae (Scer) and
Kluyveromyces waltii (Kwal)), transfer RNAs (tRNAs) (in-
cluding the entire tRNA set, two sub-clusters of the tRNA
set, and tRNAs outside the two clusters), and origins of early
and late DNA replication (including two sets with different
identification mechanism). These features were chosen by
Duan et al. [9] with both theoretical and experimental sup-
port of their clustering behavior.

3.5 Generation of synthetic cores

To test each method’s ability to recognize truly spatially
close cores masked by outliers, we generate synthetic sets
of features with different sizes (20, 50 and 100 fragments)
by choosing random segments on the embedded yeast chro-
matin structure computed by Duan et al. [9]. We sample
from Duan et al.’s [9] embedding since it is built based on
real 3C data, and it incorporated a variety of known biolog-
ical constraints. We define a set of segments to be spatially
close if they are within a diameter of 400nm, and we define
them to be not spatially close otherwise. This diameter is
chosen by observing that 400nm is 1/5 of the diameter of the
yeast nucleus (2000nm) [9], and such a diameter results in a
volume < 1% of the entire nucleus volume. Additionally, in
the histogram of the pairwise Euclidean distances between
beads in the Duan et al. [9] yeast embedding, only 11.7% of
the distances are within 400nm.

To construct a synthetic set with a spatially close core
and with some fraction of outliers, we first pick a certain
percent (r.) of the synthetic set as core segments. To do
this, we choose a center segment u € V and then search
for restriction fragments that fall within the sphere centered
at that point with a radius of 200nm. All fragments inside
this sphere will be at most 400nm away from each other.
We define Cy(u) as the set of all segments within a 200nm
radius of u. We discard Cq(u) if |Ca(u)| < 7¢|F|. We then
randomly pick C(u) C Cq(u) as the set of core segments
such that |C(u)| = r¢|F|. Secondly, we randomly choose the
rest of the nodes in F' outside the 200nm radius from the
center point to be outliers. The reason for choosing some
spatially-not-close fragments to add to the synthetic core
instead of some random fragments is to enlarge the effect of
the outliers.

If all sampled fragments are from the same chromosome,
any method based solely on inter-chromosomal interactions
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Figure 1: Defining positive examples and negative
examples. (A) Cumulative distribution of 1-r.. (r.
here is the relative size of the largest spatially-close
subset of the instance.) None of the random sets
contain a spatially close set with r. > 0.5. (B) An
example of true positive set (r. = 0.6, |F| = 20). (C)
An example of random set (|F| = 20). (B) and (C)
are drawn using a spring layout. Node colors rep-
resent different chromosomes. A less transparent
and wider edge represents a higher 3C interaction
frequency between fragment pairs.

will fail to detect the spatial proximity by construction, since
no intra-chromosomal interactions are included. We there-
fore discard sets only containing fragments from a single
chromosome since our test data is inter-chromosomal. (See
discussion in section 4.5.)

3.6 Constructing spatially close sets (positive
examples)

In order to evaluate a statistic’s power for detecting spatial
enrichment, a positive example—a set of fragments that can
be called significantly more spatially close than expected by
chance, and a true negative—a set that cannot be called
significantly compact, should be well defined.

Intuitively, a set containing a large compact core (r. is
big) is likely to be called spatially enriched as a whole. We
therefore find a 7. cutoff such that a set with a core at least
that large can be called significantly spatially compact. To
find such a cutoff, we estimate the size of the largest set
with a diameter of 400nm in 1000 randomly selected frag-
ment sets with different set sizes (|F'| = 20,50,100). This
distribution is an estimation of the probability of observing
a compact core of a particular size in randomly chosen sam-
ples (Figure 1A). None of the samples in the random sets
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Table 1: Pearson correlation coefficient between the tested topological properties and the cubic root of
the volume of the covex hull on the entire randomly sampled fragment sets and on the maximum density
subgraphs within in the sets.

|F| =20 |F| =50 |F| =100
whole set dense core whole set dense core whole set dense core
edge-fraction -0.08 -0.79 -0.11 -0.88 -0.10 -0.94
average shortest path 0.05 0.79 0.03 0.91 0.07 0.96
average max flow -0.05 -0.16 -0.09 -0.58 -0.11 -0.74
weighted density -0.06 0.05 -0.05 -0.35 -0.02 -0.51
unweighted density -0.07 0.41 -0.08 0.20 -0.07 0.16

contains a compact core with r. > 50%. We thus define a set
of embedded fragments generated as in the previous section
to be a positive example if the largest close core within the
set has a size > 0.5|F|. An example of a true positive set is
shown in Figure 1B. For different set sizes |F'| = 20, 50, 100,
we generate 1000 positive sets with r. varying from 0.5 to
1.0.

3.7 Constructing negative examples

Analogous to the definition of positives, we could define
the negative set with another cutoff of r. such that a set
containing a core with 7. less than some value is not sig-
nificantly spatially close. However, such a filtering scheme
makes the example less random. This introduces the new
problem that a method that can reject this ‘far’ set is not
necessarily capable of rejecting the true null hypothesis of
random loci. Therefore we define the negative set as a set
of randomly chosen fragments (or genes). An example of a
random set is shown in Figure 1C.

4. RESULTS

4.1 Graph-based statistics correlate well with
embedded distances on dense cores

We randomly sample 1000 sets (|F| = 20,50, 100) of re-

striction fragments from G. As an indication of the true spa-

tial proximity, we compute the volume of the convex hull [1]

Whole set
Pearson: 0.07

Maximum density subgraph
Pearson: 0.96

1000
1750 800
600
400

200

90 92 94 96 98 100 102 104 [ 20 40 60 80

Cubic root of volume of convex hull

Figure 2: Scatter plot relating average shortest
paths and the cubic root of volume of convex hull
(nm) on the entire randomly sampled fragment sets
and on the maximum density subgraph within the
sets (|F| = 100). Average shortest path on the maxi-
mum density subgraph strongly correlates with the
cubic root of the volume, while no correlation is ob-
served on the entire set.
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using the embeddings from Duan et al. [9] for every random
set. We then compute the correlation between the topolog-
ical properties and the true spatial proximity. We take the
cubic root of the volume so that the unit of the topological
properties and the unit of the true spatial proximity are on
the same scale.

Although no strong correlations are observed when the
properties are computed on the entire set (Table 1), if the
maximum density subgraphs within the sets are found first,
and the embedded distances and the topological properties
are computed on these subgraphs, strong correlations ap-
pear between the embedded distance and the edge-fraction,
average shortest path, and average maximum flow (Figure
2, Table 1). (Here property (d), the density is computed
on the entire maximum density subgraph, not on the maxi-
mum density subgraph of the maximum density subgraph).
Edge-fraction, max flow and density all inversely correlated
with the embedded distance, while shortest path positively
correlates with the embedded distance. Intuitively, we ex-
pect a spatially compact set to be denser, to have a larger
average max flow, and to have shorter average shortest path,
and we find the sets returned by maximum density subgraph
to have these properties. These correlations increase as |F|
increases. This is because not enough 3C interactions are
included in smaller sets to accurately evaluate the density
and edge fraction, and noisy data has a larger effect.

The density of the maximum density subgraph has a weaker
correlation compared to other tested properties. As we ob-
serve, the density grows as the graph size increases. For
instance, a complete non-weighted graph of size n has a den-
sity of (n — 1)/2. Edge-fraction, on the other hand, assigns
all complete graphs of all different sizes the same score of 1.
Therefore, the positive correlation between the density and
the graph size weakens the correlation between the density
and the embedded distance.

The weighted density correlates better with real spatial
proximity than the unweighted density (Table 1). The un-
weighted density does not correlate as expected with spatial
proximity. For set size 50 and 100, weighted density is in-
versely correlated with the cubic root of the volume, while
the unweighted density are positively correlated with the cu-
bic root of the volume. The inverse correlation is expected
since denser regions should have a smaller volume. The cor-
relation for both weighted density and non-weighted density
are positive when set size is 20, which is probably due to
the sparsity of the small graph as discussed above. These
results illustrate that a more precise evaluation of the spa-
tial proximity within set can be achieved by considering the
interaction frequencies rather than just edge presence or ab-
sence as done by Witten and Noble [26].
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Figure 3: Scatter plot of the spatial Jaccard score
between the true compact core and the dense core
on the positive sets with size |F| = 100 (similar re-
sults observed for |F| = 20,50). The x axis is 7¢, y
axis is the portion of the most common chromosome,
and the color represents the value of the spatial Jac-
card score. The spatial Jaccard score is high when
r. approaches 1 and when the test sets contains frag-
ments from a variety of chromosomes.

High correlations can occur if the densest subgraphs of all
sets strongly overlap with each other. Under such circum-
stances, the conclusion that the topological properties drive
the high correlation is not valid. To make sure the correla-
tion is not caused by dense, highly overlapping regions, we
compute the Jaccard similarity coefficient on nodes in max-
imum density subgraphs for all pair of sets. More than 99%
of the pairwise Jaccard scores are less than 0.5 for all set
sizes. Moreover, 99.1% pairs share zero nodes in their max-
imum density subgraphs when |F| = 20. The proportion of
zero overlap is 95.3% for |F| = 50 and 82.4% for |F| = 100.
This test illustrates that we have covered distinct regions
on the chromosome and that the correlation between the
approximate embedded distance and the tested topological
properties holds in general.

The results above not only demonstrate that maximum
density subgraphs correspond to spatially compact cores,
but they also indicate that the tested topological proper-
ties are a good approximation for spatial proximity of these
cores.

4.2 The maximum density approach identifies
true compact cores

Further, to evaluate the ability of the maximum den-
sity subgraph approach to find spatially compact cores, we
want to show both that the nodes inside the maximum den-
sity subgraph (dense core) overlap well with the nodes in a
known true spatial compact core (true core), and that the
volume of the dense core agrees well with the volume of the
true core. We use a spatial Jaccard score to measure a com-
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Figure 4: Maximum spatial Jaccard scores of frag-
ments (J;) observed in the maximum density sub-
graphs of all test set with |F| = 100. Centromere
regions for different chromosomes are marked with
red rectangles. J; is high near centromere regions.

bination of both properties. The spatial Jaccard score Jyo
between nodes in the dense core D and nodes in the true
core C' is defined as:

volume(D N C)

el = Gime(DU €)’

where volume(X) is the volume of the convex hull of a set
X of points.

We compute the spatial Jaccard score on all positive sets
and observe that the spatial Jaccard score increases if the
portion of the fragments from the most common chromo-
some decreases and if r. increases. The score is generally
between 0.5 and 0.9 when the portion of the most common
chromosome is around 20% (Figure 3). This indicates that
the dense core overlaps well with the true core in terms of
volume when the set is not denominated by a single chro-
mosome.

The spatial Jaccard score drops down to near zero when
the portion of the most common chromosome is over 50%.
The reason that maximum density subgraph cannot extract
the most dense regions for such test sets is due to the ab-
sence of intra-chromosomal interactions. A detailed discus-
sion about our reason to exclude intra-chromosomal inter-
actions is in section 4.5.

To determine whether certain chromosomal regions corre-
spond to dense regions that overlap well with true compact
regions, we look at the maximum spatial Jaccard score of a
fragment within the maximum density subgraph for every
test set. Formally, every test set I’ contains a true compact
core Cr and a maximum dense subgraph Dp; these result
in a spatial Jaccard score Jyol(Dr,Cr). Let F represent
all test sets. For a restriction fragment r € UFE]_- Dp, the
maximum spatial Jaccard score is defined as:

J = Jyvol(Dr, Cr).
f(r) Fe{Slgrela]L-‘),(reDs} 1( £ F)

A high J; indicates that there exists some highly overlapping
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Figure 5: Histogram of p-values for different meth-
ods on random gene sets [26]. All sets of genes are
chosen from a list of target genes of all known tran-
scription factors, the size of the gene set is deter-
mined by the number of target genes of a randomly
selected transcription factor. All statistics in sec-
tion 3.2 achieve a near uniform distribution on this
null set, indicating the methods are not biased.

cores involving this fragment. We observe fragments with a
high spatial Jaccard scores often locate near centromere re-
gions (Figure 4). More than half of the chromosomes have a
average non-zero Jy scores greater than 0.4 within a 20,000
bp window of the centromere. Moreover, 100% of the non-
zero Jy scores of short chromosomes (such as chromosome
1, 3 and 9) near the centromere are > 0.5, and the aver-
age non-zero Jy scores are greater than 0.6. Yet there are
432 fragments outside of the centromere regions (100,000 bp
window) with Jy > 0.5. In summary, fragments with high
Jaccard scores mainly locate near centromere regions, but
can be also found in other areas on the chromosome.

4.3 An unbiased null hypothesis

When tested on randomly generated gene sets containing
randomly selected genes without any functional relation-
ships or colocalized properties [26], all tested topological
statistics produced a uniform p-value distribution (Figure
5). Evaluating the p-value distribution on the null sets is
a standard approach to check whether a statistic has good
control for type I error [26, 17, 20]. A uniform distribution
of p-values is expected if the statistic is valid. Similar results
are observed on sets of randomly chosen fragments.

4.4 Topological properties as spatial proxies
for spatial enrichment test

We test the power of each topological property as spa-
tial proxies for evaluating spatial enrichment of a given set
on the positive sets with different set sizes. We observe all
methods correctly call compact cores significant when the
portion of fragments from the most common chromosome
is less than 30% (Figure 6). All methods except for edge-
rewiring achieve a true positive rate of 100% when the por-
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tion of fragments from the most common chromosome is less
than 20%, and a positive rate above 80% when the portion of
the most common chromosome is less than 30%. Similar to
the result of the dense core overlap, the spatial enrichment
evaluation is more accurate when sets of fragments are from
several chromosomes.

The true positive rates of all methods decrease when the
portion of the most common chromosome increases, and it
reaches a low level when the majority of the test set consists
of fragments from the same chromosome. If most of the
fragments are from one or two chromosomes, there will be
very few inter-interactions among the set to accurately esti-
mate whether the set is more spatially close than expected
by chance.

The edge rewiring method proposed by Kruse et al. [17] is
the most conservative among all tested statistics: The true
positive rate on |F| = 20 is below 20%. This is probably
because edge rewiring controls for the global transitivity of
the entire graph in the random rewiring procedure, while the
transitivity in local subgraphs in yeast might vary radically.

4.5 Rationale for including only inter-chromo-
somal edges

In line with previous studies [9, 17], our tests are on
the set of inter-chromosomal edges. Ideally, both intra-
chromosomal and inter-chromosomal edges would be used.
However, testing for spatial enrichment including intra-chro-
mosomal interactions remains a challenge.

First, a cutoff of 400nm is potentially unsuitable for a pri-
marily intra-chromosomal set of fragments. Based on the
embedding, more than 50% of the intra-chromosomal dis-
tances are less than 400nm, while less than 10% of the inter-
chromosomal distances are less than 400nm. Thus 400nm is
not a ‘surprisingly close’ cutoff for intra-chromosomal dis-
tances. However, it is difficult to find a distance cutoff that
captures sets that contains both significantly spatially close
intra-chromosomal and inter-chromosomal structures.

Second, the close spatial proximity between intra-chromo-
somal pairs is due in large part to the genomic proximity be-
tween these pairs of loci. Distinguishing spatially close sets
caused by polymer packing from otherwise more interesting
close sets such as fragments involving long range loops is not
straightforward.

Finally, inter-chromosomal and intra-chromosomal inter-
action frequencies are not on the same scale: intra-chromo-
somal interactions have a much higher expected frequency
than inter-chromosomal interactions. It is thus necessary to
place inter-chromosomal interactions and intra-chromosomal
interactions on the same scale, and to place intra-chromo-
somal interactions with different genomic distances on the
same scale. One such approach is to set g-values as the
edge weights, where a null model has already taken genomic
proximity into consideration. Another approach is to set the
edge weight as z-scores conditioned on different genomic dis-
tances [20]. Experiments run on the current test sets do not
provide evidence that these approaches perform well in es-
timating spatial enrichment. Methods of averaged shortest
path and average maximum flow only achieve a true positive
rate of < 10% when the edge weights are either g-values or
z-scores. It is possible that these approaches are too conser-
vative and are not sensitive enough to detect spatially en-
richment. It is also possible that since the embedding is com-
puted on the constraints based on frequencies (mapped to
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Figure 6: True positive rate of different methods on positive examples with different set sizes (|F| = 20, 50, 100).
The x axis is the portion of the most common chromosome. The true positive rate is high when the fragments
of the test sets are from different chromosomes, and is low when the fragments are mainly from the same
chromosome. Edge rewiring is the most conservative method.

Table 2: P-values (before Bonferroni correction) of different methods on the yeast feature sets from Duan et
al. [9] Numbers marked in red bold are p-values considered significant. Asterisks after the numbers indicate
significance after Bonferroni correction.

features edge-fraction =~ mean shortest mean flow unweighted weighted
path maximum maximum
density density
subgraph subgraph
centromeres 0.00E+4-00%* 0.00E+400%* 2.67E-02 0.00E+00%* 0.00E4-00%*
telomeres all 1.23E-02 8.56E-01 1.00E+00 9.97E-01 9.72E-01
early firing CIB5-independent origins 0.00E+-00%* 0.00E+00%* 0.00E4-00* 0.00E+00%* 2.00E-03*
late firing CIB5-dependent origins 1.66E-01 7.72E-01 8.42E-01 3.38E-01 6.30E-01
early firing Rad53-regulated origins 3.80E-03* 1.20E-02 5.40E-02 2.00E-03* 4.00E-03*
late firing Rad53-regulated orgins 4.04E-01 5.48E-01 6.96E-01 6.90E-01 8.40E-01
breakpoints (Scer) 0.00E-+00%* 0.00E+00* 0.00E-+00%* 0.00E+00* 2.00E-03*
breakpoints (Scer and Kwal) 3.80E-02 1.2E-01 5.40E-02 4.00E-03* 3.20E-02
trnas 2.00E-03* 1.60E-02 2.20E-02 1.00E-02 4.00E-02
trna cluster bright 0.00E+400%* 0.00E4+00* 0.00E+400%* 0.00E4+00* 0.00E+400%*
trna cluster dim 0.00E-+00* 6.00E-03 1.00E-02 3.40E-02 2.34E-01
trna cluster other 1.00E+00 1.00E+00 1.00E+4+-00 1.00E+00 1.00E00
A B
0.007 0.0014 T T T T
[ telomere edges n |2 telomere shortest paths
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Figure 7: (A) Edge lengths and (B) pairwise shortest-path distribution between points in the telomeres set.
Interactions among telomeres are overall low-frequency (long-distance) interactions and the distribution of
the neither d(e) nor shortest paths are significantly different from a randomly generated set.
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distances), not on z-scores or g-values, setting edge weights
as raw frequencies will thus perform better by construction.
We thus construct the 3C graph by only including inter-
chromosomal interactions. Good estimations are achieved in
sets containing fragments from a variety of chromosomes. As
mentioned, such regions often locate near centromeres (Fig-
ure 4). These regions are known to be spatially compact and
clustered around the spindle pole body (SPB) with multi-
ple chromosomes [28]. The fact that our tests perform well
in these cases helps to validate that the sets we identify as
spatially close correspond to truly spatially close sets.

4.6 Evaluation of the spatial closeness of var-
ious yeast feature sets

For the yeast feature sets [9], most statistics tested here
agree with the results presented by Witten and Noble [26].
The edge-fraction method using only the inter-chromosomal
interaction data is equivalent to the resampling method pro-
posed by Witten and Noble [26]. Before Bonferroni correc-
tion, this test finds that all tested features except the two
sets of late-firing origins (late firing CIB5-dependent origins,
late firing Radb53-regulated origins) and the tRNA outside
two clusters (trna cluster other) are statistically co-located.
Among all the methods tested, the non-weighted maximum
density approach agreed with the edge-fraction approach in
the most instances (Table 2). This is not surprising as these
are the methods that ignore edge weights. On the other
hand, the mean flow statistic is more conservative.

Witten and Noble [26] correctly identified the telomere set
as not spatially close only after Bonferroni correction. In
contrast, the other methods do not rely on multiple hypoth-
esis correction to get the correct answer, and the p-values
from the other methods are all close to 1.0. Telomeres tend
to form five to eight foci inside the nucleus during inter-
phase [9]. However, most interactions within the telomere
set are low-frequency interactions. Thus edges of the sub-
graph of the telomere set are long-distance edges, and the
distribution of the pairwise shortest paths is not significantly
smaller when compared to a random set (Figure 7). The fact
that fedge fraction cannot exploit edge weights may have lead
to a false indication that this feature is statistically signifi-
cantly colocalized.

tRNAs are also observed to have clustering behavior in
the nucleolus [9]. Duan et al. [9] found two clusters of tR-
NAs with 3C interaction data: one colocalized with cen-
tromeres (trna cluster bright), and the other colocalized with
rDNAs (trna cluster dim). Although the trna cluster dim
is considered significantly spatially enriched by the method
of edge-fraction, the weighted maximum density subgraph
does not identify it as spatially close. Again, it is plausible
that they are not significantly colocalized. The interactions
between points in this set are of lower frequency and thus
the cluster appears to be ‘dim’ in the heat map. Taking into
account the edge frequencies, as in the weighted maximum
density subgraph approach, might lead to a more accurate
estimate.

S. CONCLUSIONS AND FUTURE WORK

‘We proposed several novel topological properties as prox-
ies for testing for spatially compact regions of chromatin.
These methods avoid the costly process of computing a 3D
embedding. The shortest path and the maximum flow ap-
proach implicitly apply inferred information from the 3C

ACM-BCB 2013

graph, while the maximum density subgraph approach re-
duces the effect of outliers. The topological properties we
chose here are directly related to spatial proximity of the 3C
structures and are easy to compute. Alternative properties
of the 3C graph could result in an equally good or better
estimation of spatial proximity. One particularly interesting
approach for future work is to measure proximity via a dif-
fusion process on the 3C graph, providing robust estimates
of node proximity in the graph.

We illustrate that the tested topological properties can
be used to infer true spatial proximities in the chromosome
structure by first showing in section 4.1 that graphical prox-
imities within dense cores are strongly correlated with prox-
imities in their corresponding embeddings. We then show in
section 4.2 that dense regions found by the maximum density
subgraph overlap well with true spatial compact cores when
the test sets contains fragments from several chromosomes.

To evaluate the power of the graphical properties for test-
ing spatial enrichment, we first show in section 4.3 that all
methods result a uniform p-value distribution on the true
negative sets and are thus unbiased and valid. We then
systematically evaluated the performance of all methods by
testing them on both synthetic test sets (section 4.4) and
yeast feature sets (section 4.6). We have shown that Prob-
lem 1 (Spatial Proximity Test) can be solved equally well
by many statistics based on different topological proper-
ties when test sets involve fragments from several chromo-
somes. We also demonstrate that, under such circumstances,
the weighted maximum density method is a good solution
to both Problem 1 and Problem 2 (Compact Core Find-
ing) since the cores it finds overlap significantly with syn-
thetically generated cores. The maximum density subgraph
solves a slightly different problem from the other methods
and previous approaches. It finds the densest subset of a
given set of fragments, while the other methods evaluate
the given set as a whole.

While the framework for using topological properties to
infer spatial enrichment is generally effective, the proposed
methods cannot accurately evaluate the spatial enrichment
in regions that fragments mainly come from the same chro-
mosome due to the absence of the intra-chromosomal inter-
actions when constructing the 3C graph. We discussed in
section 4.5 the challenge of including intra-chromosomal in-
teractions. A more comprehensive test set that includes sin-
gle chromosomal examples that cannot be simply explained
by genomic proximity is yet to be developed.

Overall, we show that incorporating richer topological fea-
tures such as flow, shortest path, and maximum density sub-
graphs provides insight into finding regions that are truly
spatially enriched when the 3C graph contains sufficient in-
teractions. These topological features can be efficiently com-
puted using well-known graph algorithms.
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